数学联邦政治世界观
超小超大

指标定理(三) (10-9)

indₜ(M × N,V ⨂ W)=indₜ(M,V) · indₜ(N,W). We construct a cobordism ring Ω(B∪) as follows. We say that (M,V) ~ (N,W), if there is a manifold K such that ∂K=M ⊔ N, and there’s a complex vector bundle P restricting to V and W on M and N respectively. iv) [M,V]=0 in Ω(B∪) implies indₜ(M,V)=0. Ω(B∪) ⨂ ℚ is a polynomial ring generated by [ℂP²ⁿ,1] and [S²ⁿ,αₙ] where αₙ ∈ ˉK(S²ⁿ)=ℤ is a generator. We find that

indₜ[ℂP²ⁿ,1]=1,indₜ[S²ⁿ,αₙ]=2ⁿ.

Now intₜ is completely determined. In order to finish the proof,it suffices to show that the same properties hold for intα.

Here comes a problem. In order to define intα on K(T*M,T*M₀), we need to show that every class can be represented by a differential operator. But this is not true in general. However, this is true for pseudodifferential operators.

Note that this is a generalization of the proof of the Hirzebruch index theorem,which we will talk about later.

3 Examples:de Rham Complex and Dolbeault Com-plex

3.1 de Rham complex

Let X be a compact,differentiable manifold of dimension k and T its tangent bun-dle. Let Eᵢ=∧ⁱ (T* ⨂ ℂ). The exterior derivative d yields an elliptic complex,d=(d:ΓEᵢ → ΓEᵢ₊₁). Locally ∂f

d:fdxⁱ¹∧ · · · dxⁱᵏ ↦df∧dxⁱ¹∧ · · · dxⁱᵏ

∂f

=── dxʲ∧dxⁱ¹∧ · · · dxⁱᵏ, ∂xʲ

where the Einstein convention is used. Thus it is of order one,and

σ(x,υ)=iυⱼdxʲ∧dxⁱ¹ ∧ · · · dxⁱᵏ=iυ ∧ dxⁱ¹ ∧ · · · dxⁱᵏ.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

修仙飞升:人生模拟 连载中
修仙飞升:人生模拟
百变小优
宝子们~注意:这是女频模拟器白倩倩只不过是看了一篇女强小说吐槽几句莫名其妙穿书。穿到谁不好偏偏穿到一个跟她同名同姓从小被人换了人生的白倩倩身......
2.7万字1个月前
叮,你的专属小狗已上线 连载中
叮,你的专属小狗已上线
ins6k
简介正在更新
0.0万字4周前
相遇另一个自己 连载中
相遇另一个自己
喜沁墨琳
喜羊羊:为什么!那么多集的友谊都比不过一个新同学吗?看来另一个我说的没错!
2.9万字4周前
赤火红狼 连载中
赤火红狼
一叶子
一念成佛,一念是魔。即以成魔何必念佛,已然是佛哪来的魔?
49.2万字4周前
哈利波特坠入黑暗 连载中
哈利波特坠入黑暗
炎新一的掌上明珠
(有雷,有雷,有雷,有雷,有雷)有时候你不努力一下,都不知道什么叫绝望!
2.2万字4周前
你听风在吹,我在等你归 连载中
你听风在吹,我在等你归
落木槿
第一世。她是被贬入人界的神,他是人界三皇子,她负了他。第二世。她是私自入人界替父母报仇的神,他是她想要报仇之人的最疼爱的儿子,他不信她,他伤......
5.3万字4周前