数学联邦政治世界观
超小超大

指标定理(三) (10-7)

Here σ(P)∈ Kcₚₜ(TX)=K(DX,∂DX)=ˉK(Th(TX)) represents a class determined by the principal symbol of P,Ȃ (X)=〈Â(p(TX)),[X]〉 is determined by the multiplicative sequence associated to

√x/2

────,Â(X)denotes Â(X) pulled back

sinh(√x/2)

to TX,and Td(E)=td(c(E)) is determined by the multiplicative sequence associated to

x

────

1–e⁻ˣ

for a complex bundle E.(Here the Todd class is also pulled back to TX. See subsection 4.1 if you don’t know multiplicative sequence. )More generally,for an elliptic complex we can define the following: For any elliptic complex D=(Dᵢ:ΓEᵢ → ΓEᵢ₊₁) over a compact oriented 2n-dimensional manifold X,

1 ₘ

indₜ(P)=(–1)ⁿ〈(───) ∑(–1)ⁱch(Eᵢ))(Td

e(TX) ᵢ₌₀

(TX ⨂ ℂ)),[X]〉.

There’s a version of splitting principle,which says that an oriented real vector bundle of rank 2n can be pulled back over some space and splits into a direct sum of oriented plane bundles.Moreover,the mappings between cohomology groups of the base spaces are injective. Since TX is of rank 2n and is oriented,using splitting principle,we may assume that it splits into a direct sum of rank 2 oriented plane bundles,and thus it has a natural almost complex structure. After complexifying,it splits into a sum of complex line bundles l₁ ⨁ lˉ₁ ⨁ · · · lₙ ⨁ lˉₙ.Let xᵢ be the first Chern class of lᵢ. Then

xᵢ –xᵢ

Td(TX ⨂ ℂ)∏ ──── ────.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

君落戏 连载中
君落戏
火禾.
1.3万字5个月前
吾凰在上之神明的宝物 连载中
吾凰在上之神明的宝物
糖果奶昔鸭
一位名叫赤圆的凰炎公主,在后来的某一种原因,知道了自己是凤凰神,并且有四个哥哥,在这同时自己也获得了真爱
2.4万字5个月前
变成系统后的那些事 连载中
变成系统后的那些事
你的随便已送达
警告!这是一本比较考验脑洞的……沙雕文(⑉°з°)-♡带有一点“小虐”。第一次写文,不好的话,也请见谅,你们可以提出意见,我会改正的。原创,......
14.4万字5个月前
洛小熠调戏凯风 连载中
洛小熠调戏凯风
黑化凯风
0.0万字5个月前
摆脱NPC身份后,我俩在无限流中杀疯了 连载中
摆脱NPC身份后,我俩在无限流中杀疯了
浮木散
(已完结)冷峻反骨的指挥官(NPC)×话多傲娇的ASD战队队长炸毁D级星球中一个待“审核”的小星球后,谢桉成功被星际联合组织的指挥官逮捕了。......
11.5万字5个月前
暮色千辞之景修 连载中
暮色千辞之景修
楠知君
此书又名【透明炮灰在线跑路】楠知君首部原创女频作品码字不易未经同意禁止转载——文案一因买烧烤而被人误推滚下楼梯,因抢救无效的千辞,死后被续命......
8.5万字5个月前