数学联邦政治世界观
超小超大

指标定理(三) (10-7)

Here σ(P)∈ Kcₚₜ(TX)=K(DX,∂DX)=ˉK(Th(TX)) represents a class determined by the principal symbol of P,Ȃ (X)=〈Â(p(TX)),[X]〉 is determined by the multiplicative sequence associated to

√x/2

────,Â(X)denotes Â(X) pulled back

sinh(√x/2)

to TX,and Td(E)=td(c(E)) is determined by the multiplicative sequence associated to

x

────

1–e⁻ˣ

for a complex bundle E.(Here the Todd class is also pulled back to TX. See subsection 4.1 if you don’t know multiplicative sequence. )More generally,for an elliptic complex we can define the following: For any elliptic complex D=(Dᵢ:ΓEᵢ → ΓEᵢ₊₁) over a compact oriented 2n-dimensional manifold X,

1 ₘ

indₜ(P)=(–1)ⁿ〈(───) ∑(–1)ⁱch(Eᵢ))(Td

e(TX) ᵢ₌₀

(TX ⨂ ℂ)),[X]〉.

There’s a version of splitting principle,which says that an oriented real vector bundle of rank 2n can be pulled back over some space and splits into a direct sum of oriented plane bundles.Moreover,the mappings between cohomology groups of the base spaces are injective. Since TX is of rank 2n and is oriented,using splitting principle,we may assume that it splits into a direct sum of rank 2 oriented plane bundles,and thus it has a natural almost complex structure. After complexifying,it splits into a sum of complex line bundles l₁ ⨁ lˉ₁ ⨁ · · · lₙ ⨁ lˉₙ.Let xᵢ be the first Chern class of lᵢ. Then

xᵢ –xᵢ

Td(TX ⨂ ℂ)∏ ──── ────.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

奇幻之旅,梦幻未来 连载中
奇幻之旅,梦幻未来
令狐倾梧
灵启泽与汪晓夕,一对自小相伴的青梅竹马。与他们各自的挚友——刘夜羽、赵欣月、程雪夕、凌幽燃、顾云城、王明泽、白凌虎、霍言博。共同编织着青春的......
1.3万字4周前
当他们被网暴后回奇猫国当了镇长2 连载中
当他们被网暴后回奇猫国当了镇长2
173***038_5050768635
0.3万字4周前
神兵小将:天心校园恋 连载中
神兵小将:天心校园恋
桃汩蒂娜
本文主要CP:天心、影雪、雷灵、郎莎、勇雅,注意:本文西门孝在美国,原本想让孝莎的,只不过本文我是想让几位男主当校草,如果让西门孝当校草,我......
2.2万字4周前
糟糕身份暴露! 连载中
糟糕身份暴露!
受伤的他
0.6万字4周前
阎王殿:我在二班当守护神 连载中
阎王殿:我在二班当守护神
爱糖不吃糖
我们的宗旨:千奇百转脑回路,语不惊人死不休。我们的路线:搞笑,尝试走回正常道路到屡次失败。大概讲啥:发疯日常
21.2万字4周前
全世界是你 连载中
全世界是你
我的一厢情愿
遇见沈倦的那一年,成为了星辰的祭日。遇见星辰的那一年,改变了我的人生轨迹。遇见沈倦之前我就没有活下去的勇气了,因为他我重新有了勇气,可是意外......
12.4万字4周前