数学联邦政治世界观
超小超大

指标定理(一) (11-6)

Consider two vector bundles ξ:E(ξ) → B and η:E(η) → B over the same base space B with E(ξ) ⊂ E(η); then ξ is a subbundle of η if each fiber Fb(ξ) is a sub-vector-space of the corresponding fiber Fb(η). Given a subbundle ξ ⊂ η, if η is provided with a Euclidean metric then a complementary summand can be constructed as follows.

Let Fb(ξ⊥) denote the subspace of Fb(η) consisting of all vectors e such that υ · ω=0 for all ω ∈ Fb(ξ). Let E(ξ⊥)⊂ E(η) denote the union of the Fb(ξ⊥).

Lemma 2 E(ξ⊥) is the total space of α sub-bundle ξ⊥ ⊂ η. Furthermore η is isomorphic to the Whitney sum ξ ⨁ ξ⊥ .

One may construct the normal bundle of an immersion in the obvious way.

1.3 Grassmann manifolds

The Grassmann manifold Gₙ(ℝⁿ⁺ᵏ) is the set of all n-dimensional planes through the origin of the coordinate space ℝⁿ⁺ᵏ . This is to be topologized as a quotient space,as follows.

4

An n-frame in ℝⁿ⁺ᵏ is an n-tuple of linearly independent vectors of ℝⁿ⁺ᵏ . The collection of all n-frames in ℝⁿ⁺ᵏ forms an open subset of the n-fold Cartesian product ℝⁿ⁺ᵏ × · · · × ℝⁿ⁺ᵏ,called the Stiefel manifold Vₙ(ℝⁿ⁺ᵏ). There is a canonical map q:Vₙ(ℝⁿ⁺ᵏ) → Gₙ (ℝⁿ⁺ᵏ) which maps each n-frame to the n-plane which it spans. Now give Gₙ(ℝⁿ⁺ᵏ) the quotient topology.

Grassmann manifolds can also be viewed as the collection of all orthogonal projections of rank n.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

神的碎叨 连载中
神的碎叨
温浨岭
一个女孩去寻找亲人的道路上,与朋友一同陷入了一场冒险,明白了神到底是什么,也明白了活着的重要性,他们面对困难,面对误会,面对痛苦,但他们也在......
0.5万字4周前
弈情 连载中
弈情
Alva🔥
争锋相对,却暗生情愫,“我不能爱上你”“可你的身体告诉我,你不是这么想的”“在枪响前,让我再吻你一次吧”
5.5万字4周前
瓢虫雷迪之瓢与猫的恋爱 连载中
瓢虫雷迪之瓢与猫的恋爱
雨默颖瓢
自己看吧不透剧才是好大大
3.3万字4周前
七怪之王者归来 连载中
七怪之王者归来
辞冉__墨莲
七怪
6.5万字4周前
次元之恋第二部 连载中
次元之恋第二部
寒冰露露
在上一部的次元之恋的结局中,女主牺牲了,第二部,女主醒来已经在现实世界,并且失忆忘记自己还有姐姐和妹妹,接下来会发生什么呢,敬请期待故事的结......
9.5万字4周前
我被联盟打了劫 连载中
我被联盟打了劫
困惑的状元
码字瞎编能手——顾桀桀意外穿越未来,被一个奇葩联盟打了劫。“加入我们,拯救光明!”……噗!太中二了吧!顾桀桀从此加入这个不靠谱联盟,探案做任......
3.6万字4周前