数学联邦政治世界观
超小超大

指标定理(一) (11-6)

Consider two vector bundles ξ:E(ξ) → B and η:E(η) → B over the same base space B with E(ξ) ⊂ E(η); then ξ is a subbundle of η if each fiber Fb(ξ) is a sub-vector-space of the corresponding fiber Fb(η). Given a subbundle ξ ⊂ η, if η is provided with a Euclidean metric then a complementary summand can be constructed as follows.

Let Fb(ξ⊥) denote the subspace of Fb(η) consisting of all vectors e such that υ · ω=0 for all ω ∈ Fb(ξ). Let E(ξ⊥)⊂ E(η) denote the union of the Fb(ξ⊥).

Lemma 2 E(ξ⊥) is the total space of α sub-bundle ξ⊥ ⊂ η. Furthermore η is isomorphic to the Whitney sum ξ ⨁ ξ⊥ .

One may construct the normal bundle of an immersion in the obvious way.

1.3 Grassmann manifolds

The Grassmann manifold Gₙ(ℝⁿ⁺ᵏ) is the set of all n-dimensional planes through the origin of the coordinate space ℝⁿ⁺ᵏ . This is to be topologized as a quotient space,as follows.

4

An n-frame in ℝⁿ⁺ᵏ is an n-tuple of linearly independent vectors of ℝⁿ⁺ᵏ . The collection of all n-frames in ℝⁿ⁺ᵏ forms an open subset of the n-fold Cartesian product ℝⁿ⁺ᵏ × · · · × ℝⁿ⁺ᵏ,called the Stiefel manifold Vₙ(ℝⁿ⁺ᵏ). There is a canonical map q:Vₙ(ℝⁿ⁺ᵏ) → Gₙ (ℝⁿ⁺ᵏ) which maps each n-frame to the n-plane which it spans. Now give Gₙ(ℝⁿ⁺ᵏ) the quotient topology.

Grassmann manifolds can also be viewed as the collection of all orthogonal projections of rank n.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

盗笔:念鱼堂 连载中
盗笔:念鱼堂
蟀鸽一玫
相传,九门之外,除去汪家,还有一大家族,金家,擅阴阳秘术,以鱼交易,行走于地上地下,行踪隐秘,少有人知金家,金家虽人丁稀少,但也有绝对势力,......
0.5万字9个月前
星山凤之追梦少年 连载中
星山凤之追梦少年
徐睿雪
“我,叫火凤凰,是星际医院的院长。”“我叫火星娃,是火星的火星国王。”“我叫金王子,是星际公安局的局长。”“我叫火山凤,是火星的奥运会冠军。......
5.4万字9个月前
善无善果,恶报何在 连载中
善无善果,恶报何在
一轮刀口月
作者笔名召月,因为重名了所以只能叫现在这个名字,作品又名《恶有善报》或《恶有好报》,初次写作怕名字太深奥,我的文笔撑不住,所以就改成了现在这......
16.2万字8个月前
神魂刃 连载中
神魂刃
溪水落悦
(已弃)
3.0万字8个月前
我是反派金手指 连载中
我是反派金手指
老酸菜
云飘无意中绑定了一个系统,为了搞清楚系统的目的,去三千世界帮助反派逆袭,成为他们的金手指,引导他们走上人生巅峰。只是,这个反派怎么缠上她了?
12.3万字8个月前
世界之外:我们总会再见 连载中
世界之外:我们总会再见
温玖缡
在世界之外的世界你又扮演着怎样的身份?“别急,我们会再次见面的”“怎么才能找到你?”“在世界之外,我们会再遇见的”“你能不能留下来陪陪我”“......
4.8万字8个月前