数学联邦政治世界观
超小超大

指标定理(一) (11-6)

Consider two vector bundles ξ:E(ξ) → B and η:E(η) → B over the same base space B with E(ξ) ⊂ E(η); then ξ is a subbundle of η if each fiber Fb(ξ) is a sub-vector-space of the corresponding fiber Fb(η). Given a subbundle ξ ⊂ η, if η is provided with a Euclidean metric then a complementary summand can be constructed as follows.

Let Fb(ξ⊥) denote the subspace of Fb(η) consisting of all vectors e such that υ · ω=0 for all ω ∈ Fb(ξ). Let E(ξ⊥)⊂ E(η) denote the union of the Fb(ξ⊥).

Lemma 2 E(ξ⊥) is the total space of α sub-bundle ξ⊥ ⊂ η. Furthermore η is isomorphic to the Whitney sum ξ ⨁ ξ⊥ .

One may construct the normal bundle of an immersion in the obvious way.

1.3 Grassmann manifolds

The Grassmann manifold Gₙ(ℝⁿ⁺ᵏ) is the set of all n-dimensional planes through the origin of the coordinate space ℝⁿ⁺ᵏ . This is to be topologized as a quotient space,as follows.

4

An n-frame in ℝⁿ⁺ᵏ is an n-tuple of linearly independent vectors of ℝⁿ⁺ᵏ . The collection of all n-frames in ℝⁿ⁺ᵏ forms an open subset of the n-fold Cartesian product ℝⁿ⁺ᵏ × · · · × ℝⁿ⁺ᵏ,called the Stiefel manifold Vₙ(ℝⁿ⁺ᵏ). There is a canonical map q:Vₙ(ℝⁿ⁺ᵏ) → Gₙ (ℝⁿ⁺ᵏ) which maps each n-frame to the n-plane which it spans. Now give Gₙ(ℝⁿ⁺ᵏ) the quotient topology.

Grassmann manifolds can also be viewed as the collection of all orthogonal projections of rank n.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

小孩的无稽之谈 连载中
小孩的无稽之谈
137***412_3514011407
1.1万字1年前
这个卡尔有点甜 连载中
这个卡尔有点甜
樱兰想肉吃
约美人和伊索的爱情故事哟~
6.9万字1年前
当哥哥们找回妹妹后 连载中
当哥哥们找回妹妹后
该用户已注销
〔已签约〕三月六日审核成功,未经过同意不许转载抄袭,违着必究。第一卷是表妹写的(懂得都懂)第二卷不是小学生剧情加文笔了!!!!!‘妹妹不听话......
13.2万字1年前
涂山之竹笙锦瑟(已换号重置) 连载中
涂山之竹笙锦瑟(已换号重置)
苏柒丶清辞已弃
在我的小说中,红红不会转世,只是女主与月初转世,女主守护住了红红,红红所受的一切由女主替代,当然,红红依旧会是大妖王实力。玉璧传,金铃现,血......
0.7万字1年前
亦时空恋 连载中
亦时空恋
筱夜寂雨
人还是要有始有终。既然决定开始就不能轻易放弃。亦时空恋精明强势曾经小杀手X痴情病娇未来大魔王一次死亡重启一个世界,一次失忆更新一个人生,一个......
26.2万字1年前
斗龙之洛 连载中
斗龙之洛
月亮上的小兔子牵着小星星
0.6万字1年前