数学联邦政治世界观
超小超大

ZFC是矛盾的:为什么类模型不是模型 (2-1)

Paradox: ZFC is inconsistent.

Proof:令FORM₁ 为集合论语言中只有一个自由变元的公式(的编码)集合。按照我们编码公式的习惯,可以假设所有公式符号都落在 Vω 中。现在定义:

G={(⌜φ⌝,α} ∈ FORM₁ × Vω:V ⊨ φ[α]} ⊂ Vω × Vω.

所以,Gᵤ:={α:(u,α)∈G},当 u 取遍 Vω 时,就列举了 Vω 中所有可定义的子集。显然,当 u ∈ FORM₁ 时 Gᵤ 才可能不为空集,这时 Gᵤ=Gφ 为由 u=⌜φ⌝ 定义的子集。现在采取康托的对角线论证法,定义 D={u ∈ Vω:u ∉ Gᵤ} 。按定义, D ≠ Gᵤ,∀u ∈ Vω。所以 D 是不可定义的。但是我们明明已经定义了 D,矛盾。 ▢

揭晓答案,这个证明的错误在于“V ⊨ φ[α]”这个(二元)关系是不可定义的,原因是 V={x:x=x} 是一个真类。

回忆一下在模型论里我们定义过A ⊨ φ[σ]这个三元关系 R(A,⌜φ⌝,σ) ,其中 σ ∈ Aⱽᵃʳ 为赋值序列:

• 若 φ 是原子公式,即 φ 为 x₁ ∈ x₂ 或者 x₁=x₂ ,那么 R(A,⌜x₁ ∈ x₂⌝ ,σ) ⇔ σ(x₁)∈σ(x₂),而 R(A,⌜x₁=x₂⌝ ,σ) ⇔ σ(x₁)=σ(x₂);

• 若 φ 是一个否定式,即 φ 为某个 ¬ψ ,那么 R(A,⌜¬ψ⌝,σ) ⇔ ¬R(A,⌜φ⌝,σ);

• 若 φ 是一个蕴含式,即 φ 是 ψ₁ → ψ₂ ,那么

R(A,⌜ψ₁ → ψ₂⌝,σ) ⇔ ¬R(A,⌜ψ₁⌝,σ)∨R(A,⌜ψ₂⌝,σ)

• 若 φ 是一个存在式,即 φ 为 ∃x₁ψ(x₁,x₂,· · ·,xₙ) ,那么

R(A,⌜∃x₁ψ⌝,σ) ⇔ ∃y ∈ A[R(A,⌜ψ⌝,σ+(x₁/y))].

其中 σ+(x₁/y) 为将 σ(x₁) 的值换成 y 后得到的赋值序列。

通常我们将R(A,⌜φ⌝,σ) 写成 A ⊨ φ[σ]。

注意到,这个定义有意义的原因在于,所有参数都是集合,而且我们实际上在使用递归定义定理来统一地定义R ,也即由递归定义定理, R 能写成一条公式(尽管很复杂)。但如果A不是集合,而是真类,那么递归定义定理就失效了,也就不能再像上面那样定义关于真类的满足关系。

而且从一开始展示的悖论也能看到,不可能有任何方法定义关系V ⊨ φ[σ] 使得: φ[σ] ⇔ V ⊨ φ[σ].

这就是为什么当哥德尔构造出了可构造宇宙L 并且证明 L 是ZFC的(类)模型之后,我们也不能就此认为ZFC是一致的,因为 L 是一个真类。

另一方面,我们还有另一种满足关系的定义,叫做相对化。注意,相对化是在元理论里定义的,它本质上只是对表达式的改造:任给集合论的一阶公式φ ,公式 M(x) 看作类,公式 E(x,y) 看作M上的属于关系,我们可以如下定义 φ 的相对化(也是一个公式),记为 φᴹ’ᴱ :

• 若 φ 为 x∈y 或 x=y ,则公式 (x∈y)ᴹ’ᴱ 就是 E(x,y) ,公式 (x=y)ᴹ’ᴱ 就是 x=y ;

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

篡改记忆 连载中
篡改记忆
白菜不菜_
如果说为了你我可以改掉自己的记忆毁掉自己的话,你会后悔吗……江澈,你不曾后悔,对吧世界处于阳光之下,到我感受不到温暖,看来我又忘了,你还在爱......
2.2万字11个月前
尊上归来 连载中
尊上归来
Cofy
魏无羡被众人再次抛弃,这次他重生归来,尽然是六界之主,至高无上的尊上。而这时又会和修真界的他们发生什么精彩的故事呢?
2.3万字11个月前
天域第一神 连载中
天域第一神
千珑樰
林清自幼受尽人间疾苦,一颗坚韧之心不肯屈服。奈何命运无常。天道破损。修天道。战北渊。手握太星之力,杀遍天下负罪之人。守护红颜知己。力争一线生......
19.2万字11个月前
余生请指教3 连载中
余生请指教3
君沐白
本书之前小号发布,现在整理整理在这里发布,各种类型小故事,一般都是想到什么写什么,文笔渣,勿喷,谢谢大家!封面图来自百度。
5.6万字11个月前
历史直播:我用天幕帮古人改变未来 连载中
历史直播:我用天幕帮古人改变未来
开心的白色糖果
沈清灵本是一个初入社会的大学生,系统的到来却让她枯燥的生活变得有意思起来它让她用天幕改变历史!当嬴政知道大秦会二世而亡后:胡亥,赵高,你们当......
0.4万字11个月前
机变英盟:未来 连载中
机变英盟:未来
时荆月
算是多重番外一篇文写不同的种种事件,因为懒得开那么多坑
1.8万字11个月前