数学联邦政治世界观
超小超大

Full outer measure的定义

在一个Fσ集F ⊂ Xᶜ 使得

μ(F)=μ*(Xᶜ),定义G=Fᶜ,则G ⊃ X是一个Gδ 集,并且

μ*(G\X)=μ*(Xᶜ\F) ≤ μ*(Xᶜ) — μ(F)=0.

所以这个G便是要求的集合。

定义2:任给集合Y ⊂ X ⊂ [0,1],称Y在X上有full outer measure,当且仅当

env(Y)=env(X),即二者拥有相同的包络。

现在来验证几个关于这两个定义的等价命题。

命题1:集合G为集合X的包络当且仅当对任何borel集A ⊂ [0,1],有

μ(A∩G)=μ*(A∩X)。

首先,μ(A∩G) ≥ μ*(A∩X)是显然的。先证明从左到右,任取borel集A,假设μ(A∩G)>μ*(A∩X),来引出矛盾。取一个Gδ集E ⊃ A ∩ X 使得

μ(E)=μ* (A∩X),此时令

F=(A∩G)\E,可知F是borel的,而且因为μ(E)=μ*(A∩X)<μ (A∩G),所以μ(E)>0 。但是, 注意到

F=(B∩G)\E ⊂ (B∩G)\(B∩X)=B∩(G\X)

所以F ⊂ G\X,而μ*(G\X)=0,所以μ(F)=0,矛盾。

在来证明从右边到左边。考察μ*(G\X),任给闭集D ⊂ G\X,来证明

μ(D)=0。因为

μ(D)=μ(D∩G)=μ*(D∩X)=μ*(∅)=0.

所以μ*(G\X)=0。

命题2:定义2等价于:对任何borel集A ⊂ [0,1],如果 A∩X 是non-null的,则 A∩Y 是non-null的。

先来证明从左到右:取G为X和Y共同的包络。现固定任何borel集A,如果A∩X是

non-null的,即μ*(A∩X)>0,则由命题1可得:

μ*(A∩Y)=μ(A∩G)=μ*(A∩X)>0.

从而 A∩Y也是non-null的。

再来证明从右到左。任取G为X的包络,我们只需要证明G也为Y的包络即可。假设不然,即μ*(G\Y)>0,则存在Fσ集

H ⊂ G\Y,使得

μ(H)=μ*(G\Y)>0。但因为

H∩Y=∅.所以 H∩Y 是null的,由前提假设,这使得H∩X也是null的。然而根据

命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

命题3:定义2等价于:对于任何borel集

A ⊂ [0,1],如果A∩X是non-null的,则

A∩Y≠∅.

由命题2,左边蕴含右边是显然的。现在“证明右边蕴含左边。取G为X的包络,我们只需证明G也为Y的包络。实际上证明和命题2的充分性相似。假设G不是Y的包络,则存在Fσ集H ⊂ G\Y使得

μ(H)=μ*(G\Y)>0。但是此时

H∩Y=∅,运用充分性假设,我们有H∩X是null的。但是根据命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

蜀山战纪2续写-d874 连载中
蜀山战纪2续写-d874
棍腮
蜀山战纪2之踏火行歌
0.3万字1年前
长征先锋——烈火如歌 连载中
长征先锋——烈火如歌
南宫慕瑜
长征先锋,红色传奇,星火之光,照耀华夏有的是我自己想的,会与现实不同,所以,切勿上升历史!切勿上升历史!切勿上升历史!重要的事说三遍
7.4万字1年前
弗露:一直都爱你 连载中
弗露:一直都爱你
星佰九瑶
弗露来了(˵¯͒〰¯͒˵)
0.7万字1年前
穿成仙界大佬的灵宠 连载中
穿成仙界大佬的灵宠
扶风乔少
【求花花,求收藏】从小被当做家族精英培养的谢权,一场车祸,成了修仙界大佬刚捡回来的灵宠-小青蛇。霸总谢权:算了,算了,穿就穿了吧!仙界大佬:......
13.8万字1年前
沅世无忧,结雨凝之…… 连载中
沅世无忧,结雨凝之……
风待云舒
作品名:沅世无忧,结雨凝之.主角:年沅(女)因为对古代的铜钱、银两的定位不清不楚,本文钱币名称改为珠环意义为能够流通的纸币有一珠环、十珠环、......
15.6万字1年前
三世龙莹恋 连载中
三世龙莹恋
木兮0921
“既然你叫流萤,不如,不如我便赠你漫天流萤吧”对我来说,人世间最美好的爱情,不是轰轰烈烈,不是生死与共,而是这个人默默的守候,只要有他在,我......
5.3万字1年前