数学联邦政治世界观
超小超大

连续统基数 (2-1)

自然数集基数

定义自然数集基数:|N|=ℵ₀。

(κ<ℵ₀ ⇔ κ ∈ N)

自然数集基数运算

加法运算: ℵ₀+ℵ₀=ℵ₀

证明:令集合

A={αₙ|n ∈ N} B={bₙ|n ∈ N},

A≈B≈N ⇒ |A|=|B|=ℵ₀ 。构建序列

c₂ₖ=αₖ

(cₙ)∞ₙ₌₀={ 则

c₂ₖ₊₁=bₖ

A∪B={cₙ|n ∈ N} ⇒ |A+B|=ℵ₀+ℵ₀=|C|=ℵ₀,得证。

推论:n+ℵ₀=ℵ₀

证明:由

n>0 ⇒ ℵ₀ ≤ n+ℵ₀ ≤ ℵ₀+ℵ₀=ℵ₀ ⇒ n+ℵ₀=ℵ₀ 。

乘法运算: ℵ₀ · ℵ₀=ℵ₀

证明:构建双射函数f:N² → N,

(m,n) (m+n+1)

f(m,n)=─────────+m。

2

详细证明参见:

推论:n · ℵ₀=ℵ₀

证明:

n ≥ 1 ⇒ ℵ₀ ≤ n · ℵ₀ ≤ ℵ₀ · ℵ₀=ℵ₀ ⇒ n · ℵ₀=ℵ₀ 。

幂运算: (ℵ₀)ⁿ=ℵ₀(乘法运算的推论)

连续统基数

(我们称实数集R 为连续统 Continuum)

定理

|R|=|P(N)|=|2ᴺ|。证明

1. 对 N 的子集构建 N → {0,1} 特征函数

0 n∈S

χₛ, ∀S ⊆ N χₛ(n)={ ,

1 n∉S

特征函数形成 P(N) 与 {0,1}ᴺ 的一一映射,因此 |P(N)|=|2ᴺ|。

2. 通过 Dedekind Cut 定义实数为有理数集的分割 r=(A,B) A,B∈Q,R 到 P(Q) 形成单射函数 ⇒ |R| ≤ |P(Q)|=|P(N)|=|2ᴺ|。(此处 Q 为可数集,与 N 等势,因此幂集基数相等)

3. 实数作为无限不循环小数可表示为仅包含 0,1 无限数列 (αₙ)∞ₙ₌₀ 形式,即 0.α₀α₁α₂α₃ . . . .(αᵢ=0 1) ,形成 2ᴺ 到 R 的单射映射 ⇒|2ᴺ| ≤ |R| .

综合2,3,根据

Cαntor — Bernstein — Schroeder Theorem(定理相关笔记详见下方) |2ᴺ|=|R|,综合1,2,3,|P(N)|=|2ᴺ|=|R| 。

运算性质

(a)

n+2ℵ⁰=ℵ₀+2ℵ⁰=2ℵ⁰+2ℵ⁰=2ℵ⁰(n∈N)

证明:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

坠幻 连载中
坠幻
远方有鹿
○性格朦胧少女X十一位女巫外加一个开朗十五岁少年○少女一觉醒来穿【世界】里去了?○开启与现实世界相对应的旅程吧!
2.3万字1个月前
宇宙沙盘 连载中
宇宙沙盘
96_03
情节纯属虚构,文笔不好请见谅。
0.7万字4周前
光的守护 连载中
光的守护
芭芭鸭宝
千珏和光神灵的故事,会带来些什么?一切都是未知,一切都是命,不是吗
0.4万字4周前
(快穿)想要抓住神明的你我 连载中
(快穿)想要抓住神明的你我
吻疯
神要旅行,一花一世界一叶一菩提,故事存在、世界就存在,心软的神明有了软肋,为了遵守约定,前往各种世界,只为救赎。可是神明啊,即使不被告破身份......
29.8万字4周前
鬼王的医妃 连载中
鬼王的医妃
花玲珑
世人皆笑将军府三小姐丑陋无比,天生痴傻。可是谁又知道她慕云浅不在是以前的慕云浅而是来自二十一世纪的中医世家的传人。当她风华绝代,绝世无双。可......
30.8万字4周前
快穿:招惹了反派Boss 连载中
快穿:招惹了反派Boss
该用户已注销
温逸辞的童年时光却是阴暗又充满恐惧的。直到,他来到,快穿世界,做起了任务,遇到了能够救赎他的光。只是在系统看来却不一样“你到底为什么要招惹反......
3.8万字4周前