数学联邦政治世界观
超小超大

【集合论悖论】数学史上的三次数学危机 (2-1)

数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素,英国人,哲学家、逻辑学家、数学家。1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。他关心社会现象,参加和平运动,开办学校。1968~1969年出版了他的自传。罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。

罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。

自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。集合论的现代悖论与逻辑的几个古代悖论有关系。例如公元前四世纪的欧伯利得悖论:“我现在正在做的这个陈述是假的”。如果这个陈述是真的,则它是假的;然而,如果这个陈述是假的,则它又是真的了。于是,这个陈述既不能是真的,又不能是假的,怎么也逃避不了矛盾。更早的还有埃皮门尼德(公元前6世纪,克利特人)悖论:“克利特人总是说谎的人”。只要简单分析一下,就能看出这句话也是自相矛盾的。

解决集合论悖论的尝试

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

侦探林悦的日常生活 连载中
侦探林悦的日常生活
小小流星大大梦想
侦探林悦勇敢聪慧。她先受委托寻找失踪丈夫,与神秘组织周旋后成功解救。接着又接手女孩失踪案,从学校到老城区,最终救出女孩。林悦在案件中尽显侦探......
新书11个月前
喜:黄粱一梦 连载中
喜:黄粱一梦
天佑中华
一群小羊生活在一个快乐的草原里,但是却来了不速之客。表面人畜无害的面孔下是否存在一个恶意满满的灵魂呢?朋友真的可信吗?你要坚信朋友不会背叛你......
0.3万字11个月前
蔷薇魔女 连载中
蔷薇魔女
EH._0819112105535077
许薇vs许佳我这是重生了吗“好戏要开场了”“这就是我的姐姐吗”许薇:“许佳!这一次我绝不会放过你”“调皮小佳,跑慢点”许佳:“呜呜呜,微微宝......
0.2万字11个月前
斗:彼岸重生 连载中
斗:彼岸重生
栀儿鸢兮
彼岸之花,尹桐儿的复仇之路
0.2万字11个月前
亲亲娘子是蝙蝠 连载中
亲亲娘子是蝙蝠
梦幻中的蝴蝶
自古以来,吸血鬼这个种族在人类有意无意间,被披上一层神秘的面纱。传说,吸血鬼男人俊美英气,女人妖娆绝美。只要见到他们的人,无不被吸引,也可以......
11.9万字11个月前
双男主:救赎篇 连载中
双男主:救赎篇
柚子代号000
“我对你爱,永远都在,至死不渝……”“聂聆,你是我的救赎,是唯一。”“能守护你是我十几辈子的幸运。”我想写的是简简单单平平淡淡从小到大一直都......
1.5万字11个月前