无穷组合中的Ramsey定理起源于图论里的Ramsey问题。首先我们来看一个简单情况。
Ramsey(k=3,l=3):平面上有6个点,两两之间连边,并且每条边染成红色或蓝色,则要么有红边构成的三角形,要么有蓝边构成的三角形。
证明:
记这6个点为 A₁,…,A₆,我们来逐点分析。对于 A₁ 而言,它与剩下5个点之间连的5条边中,红色边与蓝色边之中必有一类不少于3条(抽屉原理)。不妨设 A₁ 与 A₂,A₃,A₄ 连的都是红边,此时分为两种情况:
若 A₂,A₃,A₄ 之间存在红边,不妨设 A₂A₃ 是红边,那么 A₁A₂A₃ 就是红边三角形。
若 A₂,A₃,A₄ 之间全是蓝边,则 A₂A₃A₄ 是蓝边三角形。
综上,总存在红边或蓝边三角形。 ◻
对上述问题简单推广,就得到Ramsey问题的表述。
Ramsey问题:对一个 n 阶无向完全图的边红蓝二染色,要么存在边全为红色的 k 阶完全子图,要么存在边全为蓝色的 l 阶完全子图。给定 k,l ,总存在满足条件的 n 吗?
事实上,这样的 n 总是存在的,并且我们把最小的 n 称为Ramsey数,记为 R(k,l) 。
证明:
对 k+l 使用数学归纳法。
首先,显然有 R(1,l)=1 和 R(k,1)=1 成立。
假设 R(k−1,l) 与 R(k,l−1) 都存在,记 n₁=R(k−1,l),n₂=R(k,l−1) ,希望证明任意 n₁+n₂ 阶完全图 G 存在红色 k 阶完全子图或蓝色 l 阶完全子图,即 R(k,l) 存在且不超过 n₁+n₂ 。取 G 中一个点 A , A 与其他点连了 n₁+n₂−1 条边,这些边里要么红边至少有 n₁ 条,要么蓝边至少有 n₂ 条。
• A 连出的红边至少有 n₁ 条:由归纳假设,这 n₁ 个点中要么存在红色 k−1 阶完全子图,要么存在蓝色 l 阶完全子图。如果是后者,则命题得证。如果是前者,记这个子图为 G₁ ,由于 A 与 G₁ 中的点连的都是红边,因此 G₁∪{A} 是红色 k 阶完全子图,命题亦得证。
• A 连出的蓝边至少有 n₂ 条:由归纳假设,这 n₂ 个点中要么存在红色 k 阶完全子图,要么存在蓝色 l−1 阶完全子图。如果是前者,则命题得证。如果是后者,记这个子图为 G₂ ,由于 A 与 G₂ 中的点连的都是蓝边,因此 G₂∪{A} 是蓝色 l 阶完全子图,命题亦得证。
由数学归纳法,原命题得证。 ◻
Ramsey数很难计算,至今无人给出确切通项。不过在上述证明中,我们已给出了估计Ramsey数的一个不等式,即 R(k,l)≤R(k−1,l)+R(k,l−1) 。与组合数递推式 (ⁿ) ⁿ⁻¹
(ᵣ)=(ᵣ)+
(ⁿ⁻¹)
(ᵣ) 比较,可以通过归纳给出Ramsey数的上界: R(k,l)≤(ᵏ⁺ˡ⁻²)
(k−1) 。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。