在方法论的另一方面,我们认为把数学实践统统归结到大脑神经元的活动对数学哲学的研究作用不大。就像物理学哲学不会把物理学家的大脑作为研究对象一样,分析数学家的大脑也无助于数学真理的获得。有众多的哲学理论试图将数学语言中有关数学对象,特别是无穷对象的存在断言进行重新解释,使其本质上成为谈论某些有穷的物理对象,如符号,或大脑内部某种状态的言语。但是,迄今为止,没有任何哲学理论能如其声称的那样完成这种解释。尽管我们相信脑科学的发展会对数学哲学产生根本性的影响,但今天的脑科学知识距离分析人的思维活动还差得很远。现在就期待脑神经科学家来给数学哲学问题提供答案是对问题的过度简化。在这种简化下,人类的所有思维,无论是物理学、数学还是文学都(在当今的科技条件下)毫无区别。一种健全的数学哲学最起码要与数学实践密切相关,否则只能成为文字游戏。
抱着这样的信念,我们就不可避免地要密切关注当代数学的进展。任何有关哲学的论断,都要尽可能地在已有或正在取得的数学成果中寻找相关的“证据”这里的情形可以与物理学哲学做一个比较。一大部分的物理学哲学研究,如果不是全部的话,与近百年来物理学在一些基础问题上的重要理论和进展密切相关。但正如科纳(P.Koellner)所指出的,数学哲学中绝大多数工作却相反,它们与当代数学的发展几乎毫无关系。([5])造成这种局面的原因十分复杂,不属于本文讨论的范围。但是,十分确定的是:加强这个方向的研究,保持数学哲学与数学的最新进展的密切联系,应该能期待巨大的收获。当然,这也不可避免地使得这类数学哲学研究更为数学化。
最后,文章中的数学定义和定理,从某种意义上,是我们为论证而搜集的证据。借助这些定理,读者可以更好地把握概念间的关系,大致看出当今集合论发展的脉络,从而体会出其中的哲学意蕴。郝兆宽.杨跃柏拉图主义与集合论终极宇宙。
1独立性现象与数学真理
集合论中充满了独立性现象。在这些现象背后的是有关集合论真理的哲学问题,即:
一个集合论语言中的语句σ是真的,这是什么意思
有一派观点认为σ是真的当且仅当。在ZFC中可证。
我的感觉是,除了那些一致性命题,ZFC穷尽了我们的直观,所以,证明意味着在ZFC内证明。([7],第3页)
而这就意味着那些独立于ZFC的语句没有真假可言。
这是一个有重大影响的选择。其中最重要的影响就是承认CH本身是无意义的,而CH也许是我们对不可数集合所能提出的第一个重要问题。([1],第13页)
这样的立场被称为“形式主义”。与之相对应的立场是“柏拉图主义”,它认为一个集合论语句为真当且仅当它描述了集合宇宙中的一个客观事实。独立性命题产生的原因是我们对客观数学世界的认识不够完备。但这不意味着这些命题本身是没有真假的无意义命题,相反随着对集合宇宙认识的不断深入,我们最终会决定它们的真假。
基于此处采取的立场,从已接受的集合论公理出发,一个有关康托猜想的不可判定性的证明(与一个对的超越性的证明完全不同)决不是问题的解决。.集合论概念和定理描述了一个完全确定的实在,在其中康托猜想一定是或真或假。因此,源于今天已接受公理的对它的不可判定性,只能意味着这些公理没有完备地描述那个实在。这一信念绝非空想,因为有可能指出一些方向,在其中能得到对一些问题的判定,而这些问题对于通常的公理是不可判定的。([4],第260页)
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。