注:(2/2)章节!
5.3号提案。设T为ZFC+“存在一类适当的可扩展基数”。
则MVT证明以下是等价的:
1.存在一个满足“V=Ultimate-L”的世界。
2.C|=“V=极限-L”。
证据让MG成为MVT的典范,让W成为MG中满足V=终极L。那么W就是某个世界的一块地。但是W没有合适的理由,
因此,由于MVT意味着核心存在并且是地幔,因此W必须包含在内在核心,因此它必须是核心。
以下两个命题确定了V=Ultimate-L与MVT(其中T=ZFC+“存在一类可扩展基数”),假设V=Ultimate-L自身的一致性。
5.4号提案。设T为ZFC+“存在一类适当的可扩展基数”。如果T+'V=Ultimate-L'是一致的,那么MVT加上'C|=T+V=Ultinate-L'也是一致的。
证据设M是T+'V=Ultimate-L'的一个模型。则对于每个G⊆Coll(<Ord)M上的M-一般滤波器,MG满足最后一个命题的C|=V=Ultimate-L。
5.5号提案。假设终极-L猜想。如果T=ZFC+'存在适当的可扩展基数类是一致的,那么MVT+'C|=V=Ultimate-L'也是一致的。
证据设M是T的一个模型。设M是M中最不可扩展基数在极限-L猜想中,M具有满足V=极限-L的内部模型N,并且是的超紧性的弱扩张模型。根据普遍性定理,在N中存在一类适当的可扩展基数。现在让G⊆Coll(,<Ord)N为则NG是MVT加C|=“V=Ultimate-L”的一个模型。
然而,V=Ultimate-L的否定,如以下命题所示,
与MVT一致:
5.6号提案。如果理论T=ZFC+'存在一个适当的可扩展类基数'+'V=Ultimate-L'是一致的,那么ZFC+'也是一致的,可扩展基数'+'C|=V=Ultimate-L'。
证据设M是通过类强制的T.Force GA的模型,如[23]所示,使得(通过[5] )在得到的模型N中,存在一类适当的可扩展基数。如果G⊆Coll(,<Ord)N在N上是泛型的,则NG是MVT加C=N|='V的模型=终极L’。
5.2.Ultimate-L在MV中的作用。根据Steel在[25]中的说法,似乎可以合理地假设他会鼓励采用ZFC+LCs+V=Ultimate-L作为核心大学理论的终极理论。至关重要的是要弄清楚这可能发生,Steel宣布V=Ultimate-L是以下核心的正确公理
理由54:(1)它意味着V=C;(2)它暗示了“精细结构理论”的存在核心;(3.)它与所有LC一致。55但是,正如我们所知,鉴于MV自己机械和目标,这些动机可能只是被视为接受V=Ultimate-L,作为我们将V=Ultinate-L作为ZFC的正确扩展完全取决于MV自身的灯光是否检测到它的存在在LMV中。
因此,我们继续通过恢复关于核心的叙述来评估这些前景
第五节开头列出了大运会可能的选择。
如前所述,Universist可能会尝试性地解释LMV句子“核心存在”暗示(“实际暗示”)V是核心。从语法上讲,这将对应于采用ZFC+LC理论+
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。