卢里在拟范畴(quasi-categories)模型中发展了无穷范畴。其他数学家以前曾经在不同的模型中发展了无穷范畴。尽管这些尝试远没有卢里那么全面,但在某些情况下,它们更容易处理。“雅各布选择了一个模型,并检查了在这个模型中是否一切都成立,但这往往不是最容易的模型,”扎哈里维奇说。
在几何学中,数学家们精确地知道如何在坐标系之间切换。他们还证明了如果定理在一个坐标系中被证明,则它在另一个坐标系中也成立。
对于无穷范畴,没有这样的保证。然而,当数学家们使用无穷范畴撰写论文时,他们往往轻率地在模型之间切换,假设(但不证明)他们的结果可以保持成立。海恩说:“人们不会详细说明他们在做什么,他们会在这些不同的模型之间切换,然后说,‘哦,都是一样的’。但这不是证明。”
在过去六年里,两位数学家一直在努力做出这样的保证。里尔和来自澳大利亚麦觉理大学(Macquarie University)的多米尼克·维里蒂(Dominic Verity)一直在研究一种描述无穷范畴的方法,这种方法超越了以前限定于模型的框架所造成的困难。他们的工作建立在巴维克等人之前的工作的基础上,已经证明了高阶范畴论中的许多定理都是成立的,无论你将它们应用于哪个模型中。他们用一种恰当的方式证明了这种兼容性,里尔解释说:“我们正在研究的无穷范畴,其对象本身就是无穷范畴。范畴论在这里就像在吞食自己。”
约翰·霍普金斯大学数学家艾米丽·里尔(Emily Riehl)正在帮助引导高阶范畴理论的发展。
里尔和维里蒂还希望以另一种方式推动无穷范畴论的发展。他们阐明了无穷范畴论无论在哪个模型中都成立的那些特性。这种“与模型无关”的表示具有即插即用的特性,他们希望,这种特性能够让那些最初只能通过《高阶范畴论》进入这个领域因而离开的数学家能回到这个领域。
“要进入这个世界,你必须穿过一条护城河,而他们正在放下吊桥。”霍普金斯说道。
里尔和维里蒂希望能在明年完成他们的工作。与此同时,卢里最近开始了一个名为岩豚鼠(Kerodon)的项目,他打算把这个项目作为维基百科式的高阶范畴论教科书。在《高阶范畴论》使等价的数学形式化13年之后,这些倡议是提炼和推广这个思想的新尝试——使等价的数学更加普及。
乔亚尔说:“天才在数学发展中扮演了重要的角色,但实际上知识本身是学术界活动的结果。知识的真正目的是成为社区的知识,而不是一两个人的知识。”
────────────
后 记
数学和物理融合的黄金时代
撰文 | 文小刚 (麻省理工学院终身教授、格林讲席教授)
物理学的目的是准确地理解和描述各种各样的自然现象。但我们的物理世界是如此丰富多彩,使我们无法用日常生活所发展出来的语言来准确描写这些自然现象。特别是当我们发现一类全新的自然现象时,物理学家常常发现他们需要引入新数学、发明新语言来描写这些自然现象。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。