数学联邦政治世界观
超小超大

补丁(1)简介论文 (9-5)

结合律图。在代数中,结合律告诉我们 (a × b) × c = a × (b × c)。而一旦引入等价,仅靠结合律无法保证所有组合都有相同的乘积。这个构图称为(5元素)结合多面体,表示了组合之间的等价关系。图中每个顶点表示一种组合。共边和共面的组合根据结合律相互等价。| 图片来源:Quanta Magazine

蒙大拿州立大学数学家戴维·阿亚拉(David Ayala)说:“这使问题变得非常复杂,某种程度上使得我们理想的新版本的数学似乎不现实。”

在最新版长达1553页的《高阶代数》(Higher Algebra)中,卢里发展了无穷范畴版本的结合律——以及其他许多代数定理,它们共同奠定了等价数学的基础。

总而言之,他的两本书非常震撼,是引发科学革命的那种著作。里尔说:“规模非常庞大。这个成就可以与格罗滕迪克(Grothendieck)的代数几何革命相提并论。”

然而革命需要时间,正如卢里的书出版后数学家们发现的那样,可能会有很长时间的混乱。

3 消化一头牛

数学家以思维清晰著称:证明是否正确,想法是否有效。但是数学家也是人类,他们对新想法的反应同人类一样:主观、感性、利害取舍。

坎贝尔说:“许多数学读物的基调是,数学家们是在寻找闪闪发光的完美真理。其实不是这样的。他们有自己的品味和觉得舒适的领域,他们会因为审美或个人原因摒弃自己不喜欢的东西。”

从这个角度来说,卢里的工作带来了一个大挑战。甚至可以说是一种挑衅:这里有一种更好的研究数学的方法。对于那些职业生涯中一直致力于研究被卢里的工作超越的方法的数学家们来说,尤其如此。

弗朗西斯说:“这个过程中存在一种紧张,人们并不总是乐于看到下一代重写他们的作品。这一点对无穷范畴论有影响,以前的许多工作都被重写了。”

除此之外,其他一些因素也导致卢里的作品很难消化。长篇大作意味着数学家们需要花费大量时间来阅读。对于处于职业生涯中期的忙碌数学家来说,这几乎是不可能完成的任务,而对于研究生来说,他们只有几年时间来做出能让自己找到工作的成果,因而这也是一个高风险要求。

另外卢里的工作是高度抽象的,即使与高等数学中其他高度抽象的内容相比也是如此。就可接纳程度而言,它并不适合所有人。坎贝尔说:“一些人认为卢里的书是抽象的废话,一些人则甘之如饴,一些人的反应介于两者之间,一些人则是完全不理解。”

科学界一直在吸收新思想,但通常很缓慢,感觉就像一大群人在一起行进。当大的新想法出现时,会对科学界的知识吸收机制构成挑战。坎贝尔说:“一次性导入了太多东西,有点像蟒蛇试图吞下一头牛。有一大团东西正在通过科学界。”

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

无限流:梦魇的序章 连载中
无限流:梦魇的序章
槐央池
星云逸×林景然[双楠主]“想要逃离梦魇,就需要一个信念。”“如果在梦境中迷失光明,天上的星星无疑是最好的明灯。”某一年某一月某一天,星云逸无......
0.8万字9个月前
不可控因素…… 连载中
不可控因素……
清风吹晓梦
我从未后悔过爱上你,只是这份爱原本就是个错误
2.5万字9个月前
神界传说——舞桐你变了 连载中
神界传说——舞桐你变了
游客1557671280147
在战争中雨浩被奸人控制,杀害了舞桐,海神一气之下就雨浩赶出神界并且以后不得再入神界,雨浩去到魔界经历了3000年之久,雨浩感受到了舞桐的气息......
2.7万字9个月前
我在童话世界求生 连载中
我在童话世界求生
小楠超甜
【已签约】苏沫因为吐槽童话故事而被童话系统带入童话里面,被迫开始了童话世界的求生之旅……第一个童话世界:白雪公主篇第二个童话世界:人鱼公主篇......
13.6万字9个月前
叶罗丽之水王子的思妃 连载中
叶罗丽之水王子的思妃
宝贝是王一博
水王子本来喜欢的人是王默呀!为什么到最后却……?
新书9个月前
83号疯人院 连载中
83号疯人院
酌羽
湫白在经历一场车祸后,睁眼到了83号疯人院,遇到了各色院友,昱宁说院里每个人都有点小癖好,然后,湫白看到:牧昭在厨房里徒手熔金;屿白的腿变成......
6.6万字9个月前