(Axiom of choice,Zermelo’s version)令X为一非空集合,则存在一从X映射至X内成员的并集的函数f(称为“选择函数”),可使得对所有的Y ∈ X都会有f(Y) ∈ Y。
上述可表示为:
∀ X [ ∅ ∉ X ⟹ ∃ f : X → ∪ X ∀ A ∈ X ( f ( A ) ∈ A ) ] . \forall X \left[ \varnothing\notin X \implies \exists f : X\rightarrow \cup X\quad \forall A \in X (f(A) \in A) \right] . ∀X[∅∈/X⟹∃f:X→∪X∀A∈X(f(A)∈A)].
又表述为,给定由相互不交的非空集合组成的任何集合,存在着至少一个集合,它与每个非空集合恰好有一个公共元素。
良序原理、佐恩引理都被证明与选择公理等价。
首先定义几个概念:
集族:指由非空集合组成的集合。
选择函数:它是一个集族上的函数。它规定:对于所有在集族 X X X中的集合 s s s, f ( s ) f(s) f(s)是 s s s的一个元素。
那么,选择公理表示:
对于所有的集族,均存在选择函数。
集族上的任意笛卡尔积总是非空的。
所有集合有一个选择函数。
对于任何集合A有一个函数使得对于A的任何非空子集B, f ( B ) ∈ B f(B) \in B f(B)∈B。
选择公理是相当复杂的,并且它只断言了选择集(选择函数)的存在,却并没有给出具体构造它的方法。
补充说明:
事实上,这里对集公理、并集公理、幂集公理都可以替换成较弱的形式,然后用分离公理模式证明出来。
(弱对集公理)对任意a和b,存在一个集合Y满足 a ∈ Y ∧ b ∈ Y a \in Y \wedge b \in Y a∈Y∧b∈Y。
(弱并集公理)对任意集合X,存在集合Y满足如果存在 z ∈ X z \in X z∈X,使得 u ∈ z u \in z u∈z,则 u ∈ Y u \in Y u∈Y 。
(弱幂集公理)对任意集合X,存在集合Y满足如果存在 u ⊆ X u \subseteq X u⊆X,则 u ∈ Y u \in Y u∈Y 。
以上10大定理组成的公理系统称为ZFC,由策梅罗在1908年提出。实际上,ZFC有无穷多个公理,因为替换公理和分离公理实际上是公理模式。ZFC集合论二者都不能用有限数目个公理来公式化,这最先由Richard Montague证实。冯·诺伊曼-博内斯-哥德尔集合论(von Neumann–Bernays–Gödel Set Theory,NBG)是设计生成同Zermelo-Fraenkel 集合论与选择公理一起(ZFC)同样结果的集合论公理系统,但只有有限数目的公理,即是不使用公理模式。
依据哥德尔第二不完备定理,ZFC的一致性不能在ZFC自身之内证明。
ZFC的广延等同于普通数学,所以ZFC的相容性不能在普通数学中证明。但是几乎没有人怀疑ZFC有什么未被发觉的矛盾;如果ZFC是不自洽的,早就该被发掘出来。这是确定无疑的:ZFC免除了朴素集合论的三大悖论,罗素悖论、布拉利-福尔蒂悖论和康托尔悖论。
同样广为人知的连续统假设,也不能在ZFC自身之内证明。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。